基于“大数据”的交通可持续性
本项目为美国能源部DOE CERC-CVC项目的一个衍生项目,旨在利用“大数据”和数据科学方法,了解人类移动动态及其对交通可持续性的影响。具体而言,我们使用大型实时出租车轨迹数据来表征个体层面的移动动态(例如,在大城市中使用约20,000辆车辆的数据,为期30天)。基于对个体移动动态的表征,我们评估了大规模部署电动汽车的环境影响,优化公共电动汽车充电基础设施的位置,并评估拼车的环境效益。
- Cai, H.; Rao, R.; Xu, M. Modeling electric taxis’ charging behavior using real-world data. International Journal of Sustainable Transportation, in press.
- Cai, H.*; Zhan, X.-W.; Zhu, J.; Jia, X.-P.; Chiu, A. S. F.; Xu, M.* Understanding taxi travel patterns. Physica A: Statistical Mechanics and Its Applications 2016, 457, 590-597.
- Shahraki, N.; Cai, H.; Turkay, M.; Xu, M. Optimal locations of electric public charging stations using real world vehicle travel patterns. Transportation Research Part D: Transport and Environment 2015, 41, 165-176.
- Xu, M.*; Cai, H.; Liang, S. Big data and industrial ecology. Journal of Industrial Ecology 2015, 19 (2), 205-210.
- Cai, H.; Jia, X.-P.; Chiu, A. S. F.; Hu, X.-J.; Xu, M.* Siting public electric vehicle charging stations in Beijing using big-data informed travel patterns of the taxi fleet. Transportation Research Part D: Transport and Environment 2014, 33, 39-46.
- Cai, H.; Xu, M.* Greenhouse gas implications of fleet electrification based on Big Data-informed individual travel patterns. Environmental Science & Technology 2013, 47 (16), 9035-9043.